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Locally internal categories over an elementary topos & are regarded as categories enriched in
the bicategory Span &#. The change of base is considered with respect to a geometric morphism
F — &. Cocompleteness is preserved, and the topos & can be regarded as a cocomplete, locally
internal category over &. This allows one in particular to prove an analogue of Diaconescu’s
theorem in terms of general properties of categories.

Introduction

Locally internal categories over a topos € can be regarded as categories enriched
in the bicategory Span & and in many cases their properties can be usefully dealt
with in terms of standard notions of enriched category theory. From this point of
view Betti and Walters [2,3] study completeness, ends, functor categories, and
prove an adjoint functor theorem.

Here we consider a change of the base topos, i.e. a geometric morphism p: & — &.
In particular & itself can be regarded as locally internal over &. Again, properties
of p can be expressed by the enrichment (both in Span & and in Span &) and the
relevant module calculus of enriched category theory applies directly to most
calculations.

Our notion of locally internal category is equivalent to that given by Lawvere [6]
under the name of large category with an &-atlas, and to Benabou’s locally small
Jibrations [1]. It can be described in terms of suitable families of &/u enriched
categories (u4 varying in &), as in [8], or in terms of indexed categories, as in [7].

In Section 1, we recall the main notions and fix the terminology relative to
categories enriched in bicategories of the type Span &. Such notions extend the usual
ones of the V-enriched case (for which our reference is [5]).

1. Locally internal categories

A locally internal category over & is a (Span & )-category & with substitution
along maps. A map f is an arrow of & regarded in Spané& (such arrows are
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characterized by having a right adjoint f°) and the definition means that, for any
object x over u and any map f:v — u, the composite module

Xx,-)-frvou—tax
is representable:
g‘(x’ —) ',fE '%‘(f*x’ —)-

Equivalentiy f°- (-, x)= (-, f*x) holds.

Functors of (Span & )-categories preserve substitutions, hence we denote by
Loc(&) the 2-category of locally internal categories, all their functors and all natural
transformations between them.

In particular one-object categories (i.e. monads in Span & ) are internal categories,
and monad maps are internal functors.

An internal category C=(C, S C 2, Cy) becomes a locally internal one, in a
universal way, by the externalization process ¥: objects of ZC over u are maps
u - Cg, homs are given by

gc(f;g):-go'51‘50°'f:u_’C0_+_’C0_)U.

Substitutions are given by the compositions of maps, and the above assignment
extends to a 2-functor

@
Cat(&)—> Loc(é).

For locally internal categories, we consider limits and colimits of functors
F: A— & when A is internal. Precisely the colimit ¢ = F of Findexed by the module
o :A—>u is an object, if it exists, which represents the right Kan extension of ¢
through the module & (F, -):

Z(axF,—)=hom,(a, Z(F,~)):u—1> .

Analogously, the limit { 8, F'} indexed by the module #: ¥ — A is an object which
represents the right lifting:

(=, { B, F})=hom™ (B, & (—,F)): x> u. 8))

From an internal category C, a locally internal one, #C, can be obtained in order
to classify modules, in the sense that there is an isomorphism of categories

Mod(C, &) =Fun(&, #C) (2)

natural in C. Without ambiguity, we can use the same name for objects correspon-
ding under the bijection of (2).

In particular the Yoneda embedding C — #C corresponds to the identity module
C > C, under the isomorphism (2).

The objects over u of the category #C are the modules C —+> « and homs are
given by right Kan extensions. Observe that the objects over the terminal object 1
are internal presheaves, so the fiber of #C over ¥ can be seen as the category of
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u-indexed families of the topos &€”. In particular #1 is & regarded as locally
internal over itself.
For any internal category C, the (Span & )-category #C is locally internal, the sub-
stitution f*¢ of & : C — u along the map f: Y — u being the module f° - o: C—>b.
Moreover, #C is complete and cocomplete: with the above notation, the limit
{B,F} is given by the right lifting hom“(, F), the colimit o+ F by the composite
module a¢- F:C—>u.
In fact, #C is the free cocompletion of C, in the sense that any functor F: C—> &
(where & is a cocomplete category) factors uniquely, up to isomorphism, through
the Yoneda embedding C — #C followed by a cocontinuous functor Ly : PC— &
The functor Lg is given by the colimit:
Lp(a)=axF,

hence it is easy to see that the classical Kan formula holds, providing an equivalence
_£—>_9{”_ (3)
ae #C

between the category of functors F from an internal C to a cocomplete & and that
of adjoint pairs (L - R), where arrows are natural transformation between the left
adjoints. Observe that Ry is given by

Rr(xX)=2(F,x):C—+>u

where x is over u.

2. Change of base
A geometric morphism of topoi p: # — & determines a pair of homomorphisms
of bicategories
Span & < Span &

which we will denote by the usual notation p* and p4.
We now define the direct image p« 2 of a (Span & )-category 4. The objects of
P« over y are the objects of & over p*u, homs are defined by

(P+ANX V) =15 - Px(FH(x, ) - 1,

where x and y are over u and v respectively, and where 7’s denote the components
of the unit of the adjunction p* - p,.. When x, y and z are objects of p. & respec-
tively over u, v and w, composition is defined by

e PxX(32) N,y P0G YY) 1,205 P X (0, 2) - P+ A (X, ¥) - 1,
=90 Px(X(0,2) 06 ) -1y, = 1y P X (X,2) - 7y,

Here the last arrow is obtained by applying p, to the composition of &.
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Analogously, identities are defined by
1- '73 Ny '71,? 'p*(gﬁ(x’x)) * Ny
where the second arrow is obtained by applying px to the identity of 4.

Theorem 2.1. The category p, & is locally internal over &, if & is locally internal
over ¥.

Proof. In p, &, substitutions along maps h:u — v are given by substitutions in &
along the maps p*h:p*u—p*. O

It is easy to see that the assignment &~ p, & defines a 2-functor
P« Loc(F)— Loc(&).

We now define the inverse image p* % of a (Span & )-category %. This is obtained
simply by transporting % along the homomorphism p*. An object of p*# is thus
an object y of %, over v, regarded over p*v. Homs are defined by

P*¥ )Y 2)=p*(¥%(y,2)).

Theorem 2.2 (Change of base). For any (Span & )-category & and any (Span & )-
category %, there is an equivalence

H:%-p, &

K:p*%—-ax
natural in & and %.
Proof. The data for a functor H amount to the effect on objects (Hy is an object
of & over p*v, for any y over v in %) and the effect on arrows:

oy .2 ¥, 2) 205 p(X(Hy, H2)) - 1,

is a 2-cell in Span &, for any pair of objects y and z, over v and w respectively.
Take Ky=Hy on objects and define the effect of K on arrows by the 2-cell
p*(¥(y,2)) ~ & (Hy, Hz) obtained by the following pasting:

P*¥(1.2)
p*v +— - p*w
p*n, U p*a, p*n,
Y
J P*px X (Hy, Hz) L
P*Pxp*v ———+——— p*p.p*w
Epmy U B, Epey
? I (Hy, H7)

p*v +— — p*w
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where B, : p*px X (Hy, Hz) = €%, - X' (Hy, Hz) - €,4, is induced by the naturality of
e considered in Span €. Conversely, to assign K means to assign an object Ky of &
over p*v for every y of % over v, and a family of 2-cells

Yy : *Y(y,2) = Z(Ky, KZ)

which represents the effect on arrows. Take again H = K on objects, and define the
effect of H on arrows by the pasting

Y(»,2)
v —+ w
ny U dy, Mw
PxP*Y(3:2) Y
Pap¥v———— T pup*w
1 (I A 1
P*2(Ky, Kz) g
PxP*v > DD *w

where J,, is induced by the naturality of # in Span #. O

In the following we are interested in the equivalence
C —'p*Q"
p*C-x

only when & is a locally internal category over &# (and C is internal to &). Hence,
when D is internal to & we use p.D also to denote the category (internal to &) which
is obtained by the image under py of the monad defining D. No confusion is possible
when D is regarded as locally internal through the externalization process & because
we have:

Theorem 2.3. p.(ZD)=Z2(p+D).

Proof. It is easy to check that the bijection
p*u— Dy
u—pxDy

provides objects which correspond under the required isomorphism. L[]

3. Cocompleteness

Recall that & can be regarded as the locally internal category %1 over itself. Thus
P+ (21) can be described as the (Span & )-category whose objects over v are arrows
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1 —+ p*u in Span &, and whose homs are given by

p« (PN, p)=ny - px(hom,(e, B))- n,,.

The assignment p — p.(#1) is the correspondence on objects of a functor
(Top/ &) — Loc(&).

Under this functor, a morphism A:p—¢q in Top/& is taken to the functor
H: p(P1) > q«(#1) of (Span & )-categories defined as follows: He is the composite

0 hya: 1 hep*u— qg*u

where o :1— p*u is an object of p.(#1) over u and 7:q*= h«p* is induced by
p=q-h.
It is easy to verify that p4(#1) is a cocomplete category. More generally we have:

Theorem 3.1. If & is cocomplete, then also p« ' is cocomplete.
Proof. Consider the diagram

o H
vet=I—p.&

where 7 is an internal category. The colimit ¢ = H is given by the colimit p*a * K (in
), where K corresponds to H in the change of base. [

The calculus of colimits in p4(#C) is particularly easy. Indeed, when &= £C,
then o+ H:C— p*v is given by the composition

*

H p*a
C—tp*I—i— p*v.
Theorem 3.2. For any category C, internal to &, there is an adjunction L. -4 R

R
px(FC) 7— F(p+C).

Proof. Apply the Kan formula (3) to the image under py of the Yoneda embedding
C — #C, taking into account that p.(#C) is cocomplete (Theorem 3.1) and p«C is
internal. ]

For any object a: C— p*v in p«(#C), the module R(a): p«C—> v is given by
the composition

o

Dy I/
p*C—— p.p*v—u, 4)
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and analogously, for any f: p«C — u, the module L(5) is given by the composition

¢ p*p
C—1 pep*C—1+— p*u. )

where & denotes the counit of the adjunction p* - px.
In particular, taking C=1 in the previous theorem, we obtain an adjunction

pu#PD= 21 ©
which reproduces in terms of (Span & )-categories the original geometric morphism
& — &. By utilizing the formulas (5) and (4) for the calculation of L(f) and R(«x)
respectively, it is easy to check that, when p is an inclusion, the counit of the adjunc-
tion (6) is an isomorphism.
Theorem 3.3. When C is internal to & and D is internal to &, there is an equivalence

4
D—+ p*C
R
p«(#D) ? FC

between mod(D, p*C) and the category of adjoint pairs (L < R), natural in C and
inD.

Proof. Consider the following sequence of equivalences:

o
D—+ p*C
———  (by the property of &)
p*C—- D
— (change of base)
C - p«(#D)
— & (Kan formula)
p«(#D) ? PFC O

4. Preservation of limits

Definition 4.1. We say that p* preserves limits indexed by the module §: u — I if,
for any functor H:I— $#C, we have

p*{BH}={p*s, p*H},
when p*H is regarded as a functor p*I— P(p*C).

By taking into account the calculus of limits (1), it turns out that p* preserves
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limits indexed by £ exactly when p* preserves right liftings along £:
p*(hom’ (B, H))=hom?" (p*B, p*H) )

for any module H: C— 1.

In particular a right lifting of the type hom"(g, &), when g is a map, can be
calculated as the composition g°- . Hence, p* preserves limits indexed by maps.
Another particular case is when p is an essential morphism. Then p* preserves aii
limits and hence it preserves all right liftings.

Let us denote by @ the class of modules such that limits indexed by the modules
of & are preserved by p* in the above sense.

Corollary 4.2. If p* preserves the limits indexed by the modules of ®, then, with
the notation of the previous theorem, the following properties are equivalent:
(i) the functor L: $C — p4(#D) preserves the limit {§,H} for each f in @;
(ii) composition with the module a is a functor

—a: Pp*C)—> £D
which preserves the limit {p*p, p*H} for each B in .

Proof. (i) is equivalent to
hom?”"(p*B, p*H - a)=p*hom’ (8, H) - «
for any H: C—+ 1.
(ii) is equivalent to
hom?”(p*B, p*H - «)=hom” " (p*B, p*H) - a.

The statement now follows from (7), i.e. from the hypothesis that p* preserves
limits indexed by 5. [

As a particular case of the above Coroliary 4.2, we obtain in this setting the
Diaconescu theorem [4]. For this, consider D=1 and recall that the topoi &
and FP°C7 are the fibers over 1 of #C and #(p*C) respectively. Moreover, all
finite limits in these categories can be obtained as limits {f, H}, where H has
domain in a finite category whose objects are all over 1, and f§ is a module whose
components are all identities. Hence p* preserves limits indexed by § and Corollary
4.2 applies.

5. Generators

For a category & enriched in Span &, it is natural to say that the object x, over



Change of base for locally internal categories 241

u is a generator whenever, for every pair of objects y and z, the 2-cell
2(,2) = hom" (X (x, ¥), X (%, 2)) (3)

obtained by composition in &, is a monomorphism.
If we denote by C the internal full subcategory @(x,,X,), this means that,
regarding 2'(xy, ¥) as a module C— v, the functor

X(xg, —): X FC

given by y — &'(x,, »), is faithful.

Definition 5.1. The object x; is said to be a strong generator if, for every pair of
objects y and z, the 2-cell (8) is the equalizer (in the category of spans v —> w) of
the pair

hom* (& (xp, ¥), X'(xo, 2)) 3 hom™ (X (xy, ¥), hom™ (X (xy, Xo), (%0, 2)))

i.e. the functor & (xy, —) is fully faithful.

It is now easy to give the link with the usual notion of object of generators. Let
us denote again by C the internal full subcategory of & generated by the object x,.
Then we have:

Lemma 5.2. Suppose & is cocomplete. Then x, is a strong generator if and only
if the functor (xy, —): X — PC has a left adjoint such that the counit is an iso-
morphism.

Proof. Apply the Kan formula (3) to the object x; regarded as a functor C— &
The left adjoint is given by — *x,, and for every y we have &'(xg, ) * xo =y because
A'(xy, —) is fully faithful. O

Theorem 5.3. Suppose p* preserves the limits indexed by the modules of ®. Then
p is bounded over & if and only if p«($#1) has a strong generator x, such that
— %Xy PC - p(P1) preserves the limits {B,H}, for each B in &.

Proof. The morphism p is bounded over & if and only if there is an inclusion
F- & over & [4]. This gives a module @:1—+ p*C such that composition
with a preserves limits of type {p*B, p*H} with 8 in @. From a we determine a
strong generator x; of p4«(#1) and Corollary 4.2 ensures that — * x: #C = p(£1)
preserves the limits of type {8, H}. The converse is similar. [
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