CHANGE OF BASE FOR LOCALLY INTERNAL CATEGORIES

Renato BETTI

Università di Torino, Dipartimento di Matematica, via Principe Amedeo 8, 10123 Torino, Italy

Communicated by G.M. Kelly Received 4 August 1988

Locally internal categories over an elementary topos \mathscr{F} are regarded as categories enriched in the bicategory Span \mathscr{F} . The change of base is considered with respect to a geometric morphism $\mathscr{F} \rightarrow \mathscr{E}$. Cocompleteness is preserved, and the topos \mathscr{F} can be regarded as a cocomplete, locally internal category over \mathscr{E} . This allows one in particular to prove an analogue of Diaconescu's theorem in terms of general properties of categories.

Introduction

Locally internal categories over a topos \mathscr{E} can be regarded as categories enriched in the bicategory Span \mathscr{E} and in many cases their properties can be usefully dealt with in terms of standard notions of enriched category theory. From this point of view Betti and Walters [2, 3] study completeness, ends, functor categories, and prove an adjoint functor theorem.

Here we consider a change of the base topos, i.e. a geometric morphism $p: \mathscr{F} \to \mathscr{E}$. In particular \mathscr{F} itself can be regarded as locally internal over \mathscr{E} . Again, properties of p can be expressed by the enrichment (both in Span \mathscr{F} and in Span \mathscr{E}) and the relevant module calculus of enriched category theory applies directly to most calculations.

Our notion of locally internal category is equivalent to that given by Lawvere [6] under the name of *large category with an &-atlas*, and to Benabou's *locally small fibrations* [1]. It can be described in terms of suitable families of \mathscr{E}/u enriched categories (u varying in \mathscr{E}), as in [8], or in terms of *indexed categories*, as in [7].

In Section 1, we recall the main notions and fix the terminology relative to categories enriched in bicategories of the type Span \mathscr{E} . Such notions extend the usual ones of the V-enriched case (for which our reference is [5]).

1. Locally internal categories

A locally internal category over \mathscr{E} is a (Span \mathscr{E})-category \mathscr{X} with substitution along maps. A map f is an arrow of \mathscr{E} regarded in Span \mathscr{E} (such arrows are

0022-4049/89/\$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

characterized by having a right adjoint f°) and the definition means that, for any object x over u and any map $f: v \rightarrow u$, the composite module

$$\mathscr{X}(x,-)\cdot f: v \to u \longrightarrow \mathscr{X}$$

is representable:

$$\mathscr{X}(x,-)\cdot f \cong \mathscr{X}(f^*x,-).$$

Equivalently $f^{\circ} \cdot \mathscr{X}(-, x) \cong \mathscr{X}(-, f^*x)$ holds.

Functors of $(\text{Span } \mathscr{E})$ -categories preserve substitutions, hence we denote by $\text{Loc}(\mathscr{E})$ the 2-category of locally internal categories, all their functors and all natural transformations between them.

In particular one-object categories (i.e. monads in Span \mathscr{E}) are internal categories, and *monad maps* are internal functors.

An internal category $\mathbf{C} = (C_0 \xleftarrow{\delta_0} C_1 \xrightarrow{\delta_1} C_0)$ becomes a locally internal one, in a universal way, by the *externalization process* \mathscr{L} : objects of $\mathscr{L}\mathbf{C}$ over u are maps $u \to C_0$, homs are given by

$$\mathscr{L}\mathbf{C}(f,g) = g^{\circ} \cdot \delta_1 \cdot \delta_0^{\circ} \cdot f : u \to C_0 \longrightarrow C_0 \to v.$$

Substitutions are given by the compositions of maps, and the above assignment extends to a 2-functor

$$\operatorname{Cat}(\mathscr{E}) \xrightarrow{\mathscr{L}} \operatorname{Loc}(\mathscr{E}).$$

For locally internal categories, we consider limits and colimits of functors $F: \mathbf{A} \to \mathscr{X}$ when **A** is internal. Precisely the colimit $\alpha * F$ of F indexed by the module $\alpha : \mathbf{A} \longrightarrow u$ is an object, if it exists, which represents the right Kan extension of α through the module $\mathscr{X}(F, -)$:

$$\mathscr{X}(\alpha * F, -) \cong \hom_A(\alpha, \mathscr{X}(F, -)) : u \longrightarrow \mathscr{X}.$$

Analogously, the limit $\{\beta, F\}$ indexed by the module $\beta : u \rightarrow A$ is an object which represents the right lifting:

$$\mathscr{X}(-, \{\beta, F\}) \cong \hom^{A}(\beta, \mathscr{X}(-, F)) : \mathscr{X} \longrightarrow u.$$
(1)

From an internal category C, a locally internal one, $\mathscr{P}C$, can be obtained in order to classify modules, in the sense that there is an isomorphism of categories

$$Mod(\mathbf{C},\mathscr{X})^{op} \cong Fun(\mathscr{X},\mathscr{P}\mathbf{C})$$
(2)

natural in C. Without ambiguity, we can use the same name for objects corresponding under the bijection of (2).

In particular the Yoneda embedding $\mathbf{C} \rightarrow \mathscr{P}\mathbf{C}$ corresponds to the identity module $\mathbf{C} \rightarrow \mathbf{C}$, under the isomorphism (2).

The objects over u of the category $\mathscr{P}\mathbf{C}$ are the modules $\mathbf{C} \longrightarrow u$ and homs are given by right Kan extensions. Observe that the objects over the terminal object 1 are internal presheaves, so the fiber of $\mathscr{P}\mathbf{C}$ over u can be seen as the category of

u-indexed families of the topos $\mathscr{E}^{C^{op}}$. In particular $\mathscr{P}1$ is \mathscr{E} regarded as locally internal over itself.

For any internal category **C**, the (Span \mathscr{E})-category \mathscr{P} **C** is locally internal, the substitution $f^*\alpha$ of $\alpha : \mathbb{C} \longrightarrow u$ along the map $f : Y \rightarrow u$ being the module $f^\circ \cdot \alpha : \mathbb{C} \longrightarrow v$. Moreover, \mathscr{P} **C** is complete and cocomplete: with the above notation, the limit $\{\beta, F\}$ is given by the right lifting hom^u(β, F), the colimit $\alpha * F$ by the composite module $\alpha \cdot F : \mathbb{C} \longrightarrow u$.

In fact, $\mathscr{P}\mathbf{C}$ is the free cocompletion of \mathbf{C} , in the sense that any functor $F: \mathbf{C} \to \mathscr{X}$ (where \mathscr{X} is a cocomplete category) factors uniquely, up to isomorphism, through the Yoneda embedding $\mathbf{C} \to \mathscr{P}\mathbf{C}$ followed by a cocontinuous functor $L_F: \mathscr{P}\mathbf{C} \to \mathscr{X}$. The functor L_F is given by the colimit:

$$L_F(\alpha) = \alpha * F,$$

hence it is easy to see that the classical Kan formula holds, providing an equivalence

$$\frac{\mathbf{C} \to \mathscr{X}}{\mathscr{X} \rightleftharpoons \mathscr{P} \mathbf{C}} \tag{3}$$

between the category of functors F from an internal \mathbb{C} to a cocomplete \mathscr{X} and that of adjoint pairs $(L \rightarrow R)$, where arrows are natural transformation between the left adjoints. Observe that R_F is given by

$$R_F(x) = \mathscr{X}(F, x) : \mathbf{C} \longrightarrow u$$

where x is over u.

2. Change of base

A geometric morphism of topoi $p: \mathscr{F} \to \mathscr{E}$ determines a pair of homomorphisms of bicategories

which we will denote by the usual notation p^* and p_* .

We now define the *direct image* $p_*\mathscr{X}$ of a (Span \mathscr{F})-category \mathscr{X} . The objects of $p_*\mathscr{X}$ over u are the objects of \mathscr{X} over p^*u , homs are defined by

$$(p_*\mathscr{X})(x, y) = \eta_v^\circ \cdot p_*(\mathscr{X}(x, y)) \cdot \eta_u$$

where x and y are over u and v respectively, and where η 's denote the components of the unit of the adjunction $p^* \rightarrow p_*$. When x, y and z are objects of $p_* \mathscr{X}$ respectively over u, v and w, composition is defined by

$$\begin{split} \eta_{w}^{\circ} \cdot p_{*} \mathscr{X}(y, z) \cdot \eta_{v} \cdot \eta_{v}^{\circ} \cdot p_{*} \mathscr{X}(x, y) \cdot \eta_{u} &\to \eta_{w}^{\circ} \cdot p_{*} \mathscr{X}(y, z) \cdot p_{*} \mathscr{X}(x, y) \cdot \eta_{u} \\ &\cong \eta_{w}^{\circ} \cdot p_{*} (\mathscr{X}(y, z) \cdot \mathscr{X}(x, y)) \cdot \eta_{u} \to \eta_{w}^{\circ} \cdot p_{*} \mathscr{X}(x, z) \cdot \eta_{u} \,. \end{split}$$

Here the last arrow is obtained by applying p_* to the composition of \mathscr{X} .

Analogously, identities are defined by

$$1 \to \eta_u^{\circ} \cdot \eta_u \to \eta_u^{\circ} \cdot p_*(\mathscr{X}(x,x)) \cdot \eta_u$$

where the second arrow is obtained by applying p_* to the identity of \mathscr{X} .

Theorem 2.1. The category $p_* \mathscr{X}$ is locally internal over \mathscr{E} , if \mathscr{X} is locally internal over \mathscr{F} .

Proof. In $p_* \mathscr{X}$, substitutions along maps $h: u \to v$ are given by substitutions in \mathscr{X} along the maps $p^*h: p^*u \to p^*v$. \Box

It is easy to see that the assignment $\mathscr{X} \mapsto p_* \mathscr{X}$ defines a 2-functor

 $p_*: \operatorname{Loc}(\mathscr{F}) \to \operatorname{Loc}(\mathscr{E}).$

We now define the *inverse image* $p * \mathcal{Y}$ of a (Span \mathscr{E})-category \mathcal{Y} . This is obtained simply by transporting \mathcal{Y} along the homomorphism p^* . An object of $p^* \mathcal{Y}$ is thus an object y of \mathcal{Y} , over v, regarded over p^*v . Homs are defined by

$$(p^* \mathscr{Y})(y, z) = p^*(\mathscr{Y}(y, z)).$$

Theorem 2.2 (Change of base). For any $(\text{Span } \mathcal{F})$ -category \mathcal{X} and any $(\text{Span } \mathcal{E})$ -category \mathcal{Y} , there is an equivalence

$$\frac{H\colon \mathscr{Y} \to p_*\mathscr{X}}{K\colon p^*\mathscr{Y} \to \mathscr{X}}$$

natural in *X* and *Y*.

Proof. The data for a functor H amount to the effect on objects (Hy is an object of \mathscr{X} over p^*v , for any y over v in \mathscr{Y}) and the effect on arrows:

$$\alpha_{y,z}: \mathscr{Y}(y,z) \to \eta_w^{\circ} \cdot p_*(\mathscr{X}(Hy,Hz)) \cdot \eta_v$$

is a 2-cell in Span \mathscr{E} , for any pair of objects y and z, over v and w respectively.

Take Ky = Hy on objects and define the effect of K on arrows by the 2-cell $p^*(\mathcal{Y}(y,z)) \rightarrow \mathcal{X}(Hy,Hz)$ obtained by the following pasting:

$$p^{*}v \xrightarrow{p^{*}\mathscr{Y}(y,z)} p^{*}w$$

$$\downarrow p^{*}\eta_{v} \qquad \downarrow p^{*}\alpha_{yz} \qquad \downarrow p^{*}\eta_{w}$$

$$p^{*}p_{*}p^{*}v \xrightarrow{p^{*}p_{*}\mathscr{X}(Hy,Hz)} p^{*}p_{*}p^{*}w$$

$$\downarrow \varepsilon_{p^{*}v} \qquad \downarrow \beta_{yz} \qquad \downarrow \varepsilon_{p^{*}w}$$

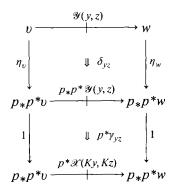
$$p^{*}v \xrightarrow{\mathscr{X}(Hy,Hz)} p^{*}w$$

236

where $\beta_{yz}: p^*p_*\mathscr{X}(Hy, Hz) \to \varepsilon_{p^*w}^{\circ} \cdot \mathscr{X}(Hy, Hz) \cdot \varepsilon_{p^*v}$ is induced by the naturality of ε considered in Span \mathscr{E} . Conversely, to assign K means to assign an object Ky of \mathscr{X} over p^*v for every y of \mathscr{Y} over v, and a family of 2-cells

$$\gamma_{y_z}: p^* \mathscr{Y}(y, z) \to \mathscr{X}(Ky, Kz)$$

which represents the effect on arrows. Take again H = K on objects, and define the effect of H on arrows by the pasting



where δ_{yz} is induced by the naturality of η in Span \mathscr{F} . \Box

In the following we are interested in the equivalence

$$\frac{\mathbf{C} \to p_* \mathscr{X}}{p^* \mathbf{C} \to \mathscr{X}}$$

only when \mathscr{X} is a locally internal category over \mathscr{F} (and **C** is internal to \mathscr{E}). Hence, when **D** is internal to \mathscr{F} we use $p_*\mathbf{D}$ also to denote the category (internal to \mathscr{E}) which is obtained by the image under p_* of the monad defining **D**. No confusion is possible when **D** is regarded as locally internal through the externalization process \mathscr{L} because we have:

Theorem 2.3. $p_*(\mathscr{L}\mathbf{D}) \cong \mathscr{L}(p_*\mathbf{D})$.

Proof. It is easy to check that the bijection

$$\frac{p^*u \to D_0}{u \to p_*D_0}$$

provides objects which correspond under the required isomorphism. \Box

3. Cocompleteness

Recall that \mathscr{F} can be regarded as the locally internal category $\mathscr{P}1$ over itself. Thus $p_*(\mathscr{P}1)$ can be described as the (Span \mathscr{E})-category whose objects over u are arrows

 $1 \rightarrow p^*u$ in Span \mathscr{F} , and whose homs are given by

$$p_*(\mathscr{P}1)(\alpha,\beta) = \eta_v^\circ \cdot p_*(\hom_1(\alpha,\beta)) \cdot \eta_u.$$

The assignment $p \mapsto p_*(\mathscr{P}1)$ is the correspondence on objects of a functor

 $(\operatorname{Top} / \mathscr{E})^{\operatorname{co}} \to \operatorname{Loc}(\mathscr{E}).$

Under this functor, a morphism $h: p \to q$ in Top/ \mathscr{E} is taken to the functor $H: p_*(\mathscr{P}1) \to q_*(\mathscr{P}1)$ of (Span \mathscr{E})-categories defined as follows: $H\alpha$ is the composite

$$\tau_u^{\circ} \cdot h_* \alpha : 1 \longrightarrow h_* p^* u \longrightarrow q^* u$$

where $\alpha: 1 \longrightarrow p^*u$ is an object of $p_*(\mathscr{P}1)$ over u and $\tau: q^* \Rightarrow h_*p^*$ is induced by $p \cong q \cdot h$.

It is easy to verify that $p_*(\mathscr{P}1)$ is a cocomplete category. More generally we have:

Theorem 3.1. If \mathscr{X} is cocomplete, then also $p_*\mathscr{X}$ is cocomplete.

Proof. Consider the diagram

$$v \stackrel{\alpha}{\leftarrow} I \stackrel{H}{\longrightarrow} p_* \mathscr{X}$$

where *I* is an internal category. The colimit $\alpha * H$ is given by the colimit $p * \alpha * K$ (in \mathscr{X}), where *K* corresponds to *H* in the change of base. \Box

The calculus of colimits in $p_*(\mathscr{P}\mathbf{C})$ is particularly easy. Indeed, when $\mathscr{X} = \mathscr{P}\mathbf{C}$, then $\alpha * H : \mathbf{C} \longrightarrow p^* v$ is given by the composition

$$\mathbf{C} \xrightarrow{H} p * I \xrightarrow{p * \alpha} p * v.$$

Theorem 3.2. For any category C, internal to \mathscr{F} , there is an adjunction $L \rightarrow R$

$$p_*(\mathscr{P}\mathbf{C}) \xleftarrow{R}{\underset{L}{\overset{R}{\longleftrightarrow}}} \mathscr{P}(p_*\mathbf{C}).$$

Proof. Apply the Kan formula (3) to the image under p_* of the Yoneda embedding $\mathbb{C} \to \mathscr{P}\mathbb{C}$, taking into account that $p_*(\mathscr{P}\mathbb{C})$ is cocomplete (Theorem 3.1) and $p_*\mathbb{C}$ is internal. \Box

For any object $\alpha : \mathbb{C} \longrightarrow p^* v$ in $p_*(\mathscr{P}\mathbb{C})$, the module $R(\alpha) : p_*\mathbb{C} \longrightarrow v$ is given by the composition

$$p^{*}\mathbf{C} \xrightarrow{p_{*}\alpha} p_{*}p^{*}v \xrightarrow{\eta_{v}^{\circ}} v, \qquad (4)$$

and analogously, for any $\beta: p_* \mathbb{C} \longrightarrow u$, the module $L(\beta)$ is given by the composition

$$\mathbf{C} \xrightarrow{\varepsilon_{\mathbf{C}}^{\circ}} p_* p^* \mathbf{C} \xrightarrow{p^* \beta} p^* u.$$
(5)

where ε denotes the counit of the adjunction $p^* \dashv p_*$.

In particular, taking C = 1 in the previous theorem, we obtain an adjunction

$$p_*(\mathscr{P}\mathbf{1}) \rightleftharpoons \mathscr{P}\mathbf{1} \tag{6}$$

which reproduces in terms of (Span \mathscr{E})-categories the original geometric morphism $\mathscr{F} \to \mathscr{E}$. By utilizing the formulas (5) and (4) for the calculation of $L(\beta)$ and $R(\alpha)$ respectively, it is easy to check that, when p is an inclusion, the counit of the adjunction (6) is an isomorphism.

Theorem 3.3. When **C** is internal to \mathscr{E} and **D** is internal to \mathscr{F} , there is an equivalence

$$\frac{\mathbf{D} \stackrel{a}{\longrightarrow} p^*\mathbf{C}}{p_*(\mathscr{P}\mathbf{D}) \stackrel{R}{\underset{L}{\longrightarrow}} \mathscr{P}\mathbf{C}}$$

between $mod(\mathbf{D}, p^*\mathbf{C})$ and the category of adjoint pairs $(L \dashv R)$, natural in \mathbf{C} and in \mathbf{D} .

Proof. Consider the following sequence of equivalences:

$$\frac{\mathbf{D} \stackrel{a}{\longrightarrow} p^* \mathbf{C}}{\frac{p^* \mathbf{C} \to \mathscr{P} \mathbf{D}}{\mathbf{C} \to p_*(\mathscr{P} \mathbf{D})}} \quad \text{(by the property of } \mathscr{P}\text{)} \\
\frac{\mathbf{C} \to p_*(\mathscr{P} \mathbf{D})}{\frac{R}{L}} \quad \text{(change of base)} \\
\text{(Kan formula)} \\
\frac{\mathbf{P}_*(\mathscr{P} \mathbf{D}) \stackrel{R}{\longleftrightarrow} \mathscr{P} \mathbf{C} \qquad \Box$$

4. Preservation of limits

Definition 4.1. We say that p^* preserves limits indexed by the module $\beta: u \to I$ if, for any functor $H: I \to \mathscr{P}\mathbf{C}$, we have

$$p^*\{\beta, H\} \cong \{p^*\beta, p^*H\},\$$

when p^*H is regarded as a functor $p^*I \rightarrow \mathscr{P}(p^*C)$.

By taking into account the calculus of limits (1), it turns out that p^* preserves

R. Betti

limits indexed by β exactly when p^* preserves right liftings along β :

$$p^*(\hom^1(\beta, H)) \cong \hom^{p^*}(p^*\beta, p^*H) \tag{7}$$

for any module $H: C \longrightarrow I$.

In particular a right lifting of the type hom (g, α) , when g is a map, can be calculated as the composition $g^{\circ} \cdot \alpha$. Hence, p^* preserves limits indexed by maps. Another particular case is when p is an essential morphism. Then p^* preserves all limits and hence it preserves all right liftings.

Let us denote by Φ the class of modules such that limits indexed by the modules of Φ are preserved by p^* in the above sense.

Corollary 4.2. If p^* preserves the limits indexed by the modules of Φ , then, with the notation of the previous theorem, the following properties are equivalent:

(i) the functor $L: \mathscr{P}\mathbf{C} \to p_*(\mathscr{P}\mathbf{D})$ preserves the limit $\{\beta, H\}$ for each β in Φ ;

(ii) composition with the module α is a functor

 $-\cdot \alpha : \mathscr{P}(p^*\mathbf{C}) \to \mathscr{P}\mathbf{D}$

which preserves the limit $\{p^*\beta, p^*H\}$ for each β in Φ .

Proof. (i) is equivalent to

 $\hom^{p^*l}(p^*\beta, p^*H \cdot \alpha) \cong p^* \hom^l(\beta, H) \cdot \alpha$

for any $H: \mathbb{C} \to I$.

(ii) is equivalent to

$$\hom^{p^{*}l}(p^{*}\beta, p^{*}H \cdot \alpha) \cong \hom^{p^{*}l}(p^{*}\beta, p^{*}H) \cdot \alpha.$$

The statement now follows from (7), i.e. from the hypothesis that p^* preserves limits indexed by β . \Box

As a particular case of the above Corollary 4.2, we obtain in this setting the *Diaconescu theorem* [4]. For this, consider $\mathbf{D} = \mathbf{1}$ and recall that the topoi $\mathscr{E}^{\mathbb{C}^{op}}$ and $\mathscr{F}^{p^*\mathbb{C}^{op}}$ are the fibers over 1 of $\mathscr{P}\mathbf{C}$ and $\mathscr{F}(p^*\mathbf{C})$ respectively. Moreover, all finite limits in these categories can be obtained as limits $\{\beta, H\}$, where *H* has domain in a finite category whose objects are all over 1, and β is a module whose components are all identities. Hence p^* preserves limits indexed by β and Corollary 4.2 applies.

5. Generators

For a category \mathscr{X} enriched in Span \mathscr{E} , it is natural to say that the object x_0 over

240

u is a generator whenever, for every pair of objects y and z, the 2-cell

$$\mathscr{X}(y,z) \to \hom^{u}(\mathscr{X}(x_{0},y),\mathscr{X}(x_{0},z))$$
(8)

obtained by composition in \mathscr{X} , is a monomorphism.

If we denote by **C** the internal full subcategory $\mathscr{X}(x_0, x_0)$, this means that, regarding $\mathscr{X}(x_0, y)$ as a module $C \longrightarrow v$, the functor

$$\mathscr{X}(x_0, -): \mathscr{X} \to \mathscr{P}\mathbf{C}$$

given by $y \mapsto \mathscr{X}(x_0, y)$, is faithful.

Definition 5.1. The object x_0 is said to be a *strong generator* if, for every pair of objects y and z, the 2-cell (8) is the equalizer (in the category of spans $v \rightarrow w$) of the pair

 $\hom^{u}(\mathscr{X}(x_{0}, y), \mathscr{X}(x_{0}, z)) \rightrightarrows \hom^{u}(\mathscr{X}(x_{0}, y), \hom^{u}(\mathscr{X}(x_{0}, x_{0}), \mathscr{X}(x_{0}, z)))$

i.e. the functor $\mathscr{X}(x_0, -)$ is fully faithful.

It is now easy to give the link with the usual notion of object of generators. Let us denote again by C the internal full subcategory of \mathscr{X} generated by the object x_0 . Then we have:

Lemma 5.2. Suppose \mathscr{X} is cocomplete. Then x_0 is a strong generator if and only if the functor $\mathscr{X}(x_0, -): \mathscr{X} \to \mathscr{P}\mathbf{C}$ has a left adjoint such that the counit is an isomorphism.

Proof. Apply the Kan formula (3) to the object x_0 regarded as a functor $\mathbb{C} \to \mathscr{X}$. The left adjoint is given by $-*x_0$, and for every y we have $\mathscr{X}(x_0, y)*x_0 \cong y$ because $\mathscr{X}(x_0, -)$ is fully faithful. \Box

Theorem 5.3. Suppose p^* preserves the limits indexed by the modules of Φ . Then p is bounded over \mathscr{E} if and only if $p_*(\mathscr{P}1)$ has a strong generator x_0 such that $-*x_0: \mathscr{P}C \to p_*(\mathscr{P}1)$ preserves the limits $\{\beta, H\}$, for each β in Φ .

Proof. The morphism p is bounded over \mathscr{E} if and only if there is an inclusion $\mathscr{F} \to \mathscr{E}^{C^{op}}$ over \mathscr{E} [4]. This gives a module $\alpha: 1 \to p^* \mathbb{C}$ such that composition with α preserves limits of type $\{p^*\beta, p^*H\}$ with β in Φ . From α we determine a strong generator x_0 of $p_*(\mathscr{P}1)$ and Corollary 4.2 ensures that $-*x: \mathscr{P}\mathbb{C} \to p_*(\mathscr{P}1)$ preserves the limits of type $\{\beta, H\}$. The converse is similar. \Box

References

- [1] J. Bénabou, Fibrations petites et localement petites, C.R. Acad. Sci. Paris 281 (1975) A897-900.
- [2] R. Betti and R.F.C. Walters, On completeness of locally internal categories, J. Pure Appl. Algebra 47 (1987) 105-117.

R. Betti

- [3] R. Betti and R.F.C. Walters, The calculus of ends over a base topos, J. Pure Appl. Algebra 56 (1989) 211-220.
- [4] R. Diaconescu, Change of base for toposes with generators, J. Pure Appl. Algebra 6 (1975) 191-218.
- [5] G.M. Kelly, Basic Concepts of Enriched Category Theory (Cambridge University Press, Cambridge, 1982).
- [6] F.W. Lawvere, Category theory over a base topos, Lecture Notes University of Perugia, 1972-73.
- [7] R. Paré and D. Schumacher, Abstract families and the adjoint functor theorem, Lecture Notes in Mathematics 661 (Springer, Berlin, 1978) 1-125.
- [8] J. Penon, Catégories localement internes, C.R. Acad. Sci. Paris 278 (1974) A1577-1580.

242