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Locally internal categories over an elementary topos 9 are regarded as categories enriched in 

the bicategory Span g. The change of base is considered with respect to a geometric morphism 

S-r 8. Cocompleteness is preserved, and the topos S can be regarded as a cocomplete, locally 

internal category over 6. This allows one in particular to prove an analogue of Diaconescu’s 

theorem in terms of general properties of categories. 

Introduction 

Locally internal categories over a topos & can be regarded as categories enriched 

in the bicategory Span& and in many cases their properties can be usefully dealt 

with in terms of standard notions of enriched category theory. From this point of 

view Betti and Walters [2,3] study completeness, ends, functor categories, and 

prove an adjoint functor theorem. 

Here we consider a change of the base topos, i.e. a geometric morphismp : 9-t CF. 

In particular 9 itself can be regarded as locally internal over 8. Again, properties 

of p can be expressed by the enrichment (both in Spangand in Span 8) and the 

relevant module calculus of enriched category theory applies directly to most 

calculations. 

Our notion of locally internal category is equivalent to that given by Lawvere [6] 

under the name of large category with an &-atlas, and to Benabou’s locally small 
fibrations [l]. It can be described in terms of suitable families of G/U enriched 

categories (U varying in G), as in [S], or in terms of indexed categories, as in [7]. 

In Section I, we recall the main notions and fix the terminology relative to 

categories enriched in bicategories of the type Span 8. Such notions extend the usual 

ones of the V-enriched case (for which our reference is [5]). 

1. Locally internal categories 

A locally internal category over E is a (Span&)-category K with substitution 

along maps. A map f is an arrow of Q regarded in Span& (such arrows are 
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characterized by having a right adjoint f “) and the definition means that, for any 

object x over u and any map f: u + u, the composite module 

is representable: 

K(x, -) *fZ X(f*x, -). 

Equivalently f". X(-,x)=X(-,f*x) holds. 

Functors of (Span&)-categories preserve substitutions, hence we denote by 

Lot(E) the 2-category of locally internal categories, all their functors and all natural 

transformations between them. 

In particular one-object categories (i.e. monads in Span &) are internal categories, 

and monad maps are internal functors. 

An internal category C = (Cc, & C, A C,) becomes a locally internal one, in a 

universal way, by the externalization process 9: objects of 9C over u are maps 

u -+ C,, horns are given by 

~c(f,g)=g”~6,~60”~f:u-tC~-ttC,-tu. 

Substitutions are given by the compositions of maps, and the above assignment 

extends to a 2-functor 

Cat(&) 5 Loc(&). 

For locally internal categories, we consider limits and colimits of functors 

F: A + X when A is internal. Precisely the colimit a *F of F indexed by the module 

u : A + u is an object, if it exists, which represents the right Kan extension of (x 

through the module %(F, -): 

R((x *F, -) G horn, ((x, .T(F, -)) : u -I+ E. 

Analogously, the limit {p, F} indexed by the module p : u + A is an object which 

represents the right lifting: 

X(-,{P,F})sh orn’(/$ .%(-, F)) : R^-tt u. (1) 

From an internal category C, a locally internal one, PC, can be obtained in order 

to classify modules, in the sense that there is an isomorphism of categories 

Mod(C, 9J)Op = Fun( X, 9C) (2) 

natural in C. Without ambiguity, we can use the same name for objects correspon- 

ding under the bijection of (2). 

In particular the Yoneda embedding C -+ PC corresponds to the identity module 

C-t+C, under the isomorphism (2). 

The objects over u of the category 9°C are the modules C f-t u and horns are 

given by right Kan extensions. Observe that the objects over the terminal object 1 

are internal presheaves, so the fiber of .9C over u can be seen as the category of 
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u-indexed families of the topos & ‘Op. In particular 91 is & regarded as locally 

internal over itself. 

For any internal category C, the (Span &)-category .!PC is locally internal, the sub- 

stitution f *(x of a : C + u along the map f : Y + u being the module f” . a : C f- u. 

Moreover, 9C is complete and cocomplete: with the above notation, the limit 

{ fi,F} is given by the right lifting homU(/3,F), the colimit a* F by the composite 

module (x. F: C-t-+ ~1. 

In fact, 9C is the free cocompletion of C, in the sense that any functor F: C --t X 

(where X is a cocomplete category) factors uniquely, up to isomorphism, through 

the Yoneda embedding C + 9C followed by a cocontinuous functor LF : 9% + X. 

The functor L, is given by the colimit: 

L,(a) = a * F, 

hence it is easy to see that the classical Kan formula holds, providing an equivalence 

C-tX 

X^FTEPC 
(3) 

between the category of functors F from an internal C to a cocomplete X and that 

of adjoint pairs (L -I R), where arrows are natural transformation between the left 

adjoints. Observe that RF is given by 

RF(x) = X(F, x) : C +’ u 

where x is over u. 

2. Change of base 

A geometric morphism of topoi p : S --f & determines a pair of homomorphisms 

of bicategories 

Span @ * Span & 

which we will denote by the usual notation p* and p,*. 
We now define the direct image p* X of a (Span $)-category X. The objects of 

p*X over u are the objects of X over p*u, horns are defined by 

(P*X)(X, Y) = II,” * P*(X(& Y)) . vu 

where x and y are over u and v respectively, and where q’s denote the components 

of the unit of the adjunction p * +p*. When x, y and z are objects of p* X respec- 

tively over U, u and w, composition is defined by 

rl::~P*X(Y~z)~~“~rluo~P*X(~~Y)~I?u-’1;1::~P*X(Y,Z)~P*X(~,Y)~~u 

= II;. P*(X(Y, 4. X(4 Y)) . vu + v; . P* X(x, 2). vu. 

Here the last arrow is obtained by applying pa to the composition of X. 
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Analogously, identities are defined by 

where the second arrow is obtained by applying p* to the identity of E. 

Theorem 2.1. The category p* 5!? is locally internal over &, if 9~ is locally internal 
over S. 

Proof. In p* LX, substitutions along maps h : u -+ II are given by substitutions in .% 

along the maps p*h :p*u -+p*v. El 

It is easy to see that the assignment 9+p*.?X defines a 2-functor 

p* : Lot(g) + Lot(G). 

We now define the inverse image p” 2f of a (Span & )-category 9. This is obtained 

simply by transporting 59 along the homomorphism p*. An object of p* 9 is thus 

an object y of 3, over u, regarded over p*v. Horns are defined by 

(P*~)(y~z)=P*(~(Y,z)). 

Theorem 2.2 (Change of base). For any (Span @)-category L’!X and any (Span &)- 

category 9, there is an equivalence 

H: z/--+p,~X 

natural in E and 9. 

Proof. The data for a functor H amount to the effect on objects (Hy is an object 

of .?Z over p*v, for any y over u in 3) and the effect on arrows: 

aY,z: ~(~,z)jr~.~,(~(H~,Hz)).~lu 

is a 2-cell in Span&, for any pair of objects y and z, over u and w respectively. 

Take Ky = Hy on objects and define the effect of K on arrows by the 2-cell 

p*( %(y, z)) -+ Z(Hy, Hz) obtained by the following pasting: 

P * KY, 2) 
p*v ----t---‘p*w 

1 

P+lU u p*q, 

1 

P*rlW 

P *P* WHY> Hz) 
P*P*P*vVP*P*P*w 

1 @THY, Hz) 1 

p*v -p*w 
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where & : p *p* E(Hy, Hz) + ciew. R(Hy, Hz). cptu is induced by the naturality of 

E considered in Span &. Conversely, to assign K means to assign an object Ky of X 

over p*v for every y of 3 over v, and a family of 2-cells 

yvZ : P * WY, z’) --f XWY, Kz) 

which represents the effect on arrows. Take again H= K on objects, and define the 

effect of H on arrows by the pasting 

WY, z) 
v-w 

J P*P * WY. z) & 

P*P”v-P*P*W 

1 P *~WY, Kz) 1 

P*P”U -P*P*w 

where 6,, is induced by the naturality of q in Span@. 0 

In the following we are interested in the equivalence 

C-tp,R 

p*c+x 

only when X is a locally internal category over @ (and C is internal to 8). Hence, 

when D is internal to 9 we usep,D also to denote the category (internal to 6’) which 

is obtained by the image under p* of the monad defining D. No confusion is possible 

when D is regarded as locally internal through the externalization process LX? because 

we have: 

Theorem 2.3. p*(9D) s9(p*D). 

Proof. It is easy to check that the bijection 

p*u-) Do 

u -+ P&, 

provides objects which correspond under the required isomorphism. 0 

3. Cocompleteness 

Recall that ~9 can be regarded as the locally internal category 91 over itself. Thus 

p*(Wl) can be described as the (Span &)-category whose objects over u are arrows 
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1 +p *u in Span @, and whose horns are given by 

p,(@lM, PI = rlu0 .p*@-q(cr, P>). rl,, . 

The assignment p - ~~(91) is the correspondence on objects of a functor 

(Top/& )=’ + Loc(& ). 

Under this functor, a morphism h :p+q in Top/& is taken to the functor 

H:p,(91) + q*(Pl) of (Span &)-categories defined as follows: Ha is the composite 

r,“.h,a: l+h*p*u-t-+q*u 

where (x: 1 +p*u is an object of p*(91) over u and r: q* * h*p* is induced by 

pzq. h. 
It is easy to verify that p*(gl) is a cocomplete category. More generally we have: 

Theorem 3.1. If .AX is cocomplete, then also p*E is cocomplete. 

Proof. Consider the diagram 

l&Z EP*x 

where I is an internal category. The colimit a *H is given by the colimit p*a *K (in 

R), where K corresponds to H in the change of base. 0 

The calculus of colimits in p*(SW) is particularly easy. Indeed, when .6X”= PC, 

then a *H: C -i-+p*u is given by the composition 

C 5 p** p:a pP*O. 

Theorem 3.2. For any category C, internal to @, there is an adjunction L-I R 

P*(~C) p 9’(P*C). 

Proof. Apply the Kan formula (3) to the image under p* of the Yoneda embedding 

C + 9C, taking into account that p*(YC) is cocomplete (Theorem 3.1) and p,C is 

internal. 0 

For any object a : C -t+p*u in p*(ST), the module R(u) :p*C +-+ u is given by 

the composition 

(4) 



Change of base for locally internal categories 239 

and analogously, for any p :p*C i-+ U, the module L(p) is given by the composition 

0 

&p*p*&T+p*lt. (5) 

where E denotes the counit of the adjunction p* ip*. 
In particular, taking C = 1 in the previous theorem, we obtain an adjunction 

p*(Wl) * 91 (6) 

which reproduces in terms of (Span &)-categories the original geometric morphism 

$+ 8. By utilizing the formulas (5) and (4) for the calculation of L(/3) and R(o) 

respectively, it is easy to check that, whenp is an inclusion, the counit of the adjunc- 

tion (6) is an isomorphism. 

Theorem 3.3. When C is internal to & and D is internal to $, there is an equivalence 

D &p*C 

between mod(D, p*C) and the category of adjoint pairs (L -I R), natural in C and 
in D. 

Proof. Consider the following sequence of equivalences: 

D &p*C 
(by the property of 9) 

p*C+ 9D 
(change of base) 

C -+ P*(~‘D) 

R 
(Kan formula) 

P*(P’D) 7 P’c 0 

4. Preservation of limits 

Definition 4.1. We say that p* preserves limits indexed by the module p : u + Z if, 

for any functor H: I+ PC, we have 

P*{P,HI = {P*P, P*HI, 

when p*H is regarded as a functor p*Z-+ B(p*C). 

By taking into account the calculus of limits (l), it turns out that p* preserves 
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limits indexed by /3 exactly when p* preserves right liftings along /I: 

p*(hom’(fi,H))zhomP*‘(p*/3,p*H) (7) 

for any module H: C+ I. 
In particular a right lifting of the type hom’(g,a), when g is a map, can be 

calculated as the composition go . a. Hence, p* preserves limits indexed by maps. 

Another particular case is when p is an essential morphism. Then p* preserves all 

limits and hence it preserves all right liftings. 

Let us denote by @ the class of modules such that limits indexed by the modules 

of @ are preserved by p* in the above sense. 

Corollary 4.2. If p* preserves the limits indexed by the modules of @, then, with 
the notation of the previous theorem, the following properties are equivalent: 

(i) the functor L : 9°C + p*(@D) preserves the limit { j3, H) for each j3 in @ ; 
(ii) composition with the module a is a functor 

which preserves the limit {p*/?, p*H} for each p in CD. 

Proof. (i) is equivalent to 

homP*‘(p*j3,p*H~cz)zp*hom’(/3,H)~a 

for any H:Cl-+Z. 
(ii) is equivalent to 

homP*‘(p*/?,p*H. cr)~hom~*‘(p*/3,p*H). IX. 

The statement now follows from (7), i.e. from the hypothesis that p* preserves 

limits indexed by /I. 0 

As a particular case of the above Corollary 4.2, we obtain in this setting the 

Diaconescu theorem [4]. For this, consider D = 1 and recall that the topoi & “” 

and @p*cop are the fibers over 1 of PC and .!?P(p*C) respectively. Moreover, all 

finite limits in these categories can be obtained as limits {p, H}, where H has 

domain in a finite category whose objects are all over 1, and /3 is a module whose 

components are all identities. Hence p * preserves limits indexed by /3 and Corollary 

4.2 applies. 

5. Generators 

For a category E enriched in Span &, it is natural to say that the object x0 over 
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u is a generator whenever, for every pair of objects y and Z, the 2-cell 

X(Y, z> + hom”(9tU~, Y), L@~XO, z)) (8) 

obtained by composition in E, is a monomorphism. 

If we denote by C the internal full subcategory X(x0,x0), this means that, 

regarding X(x0, y) as a module C-t-, u, the functor 

K(xrJ, -) : .!zr-+ 9c 

given by y - .%(x0, y), is faithful. 

Definition 5.1. The object x0 is said to be a strong generator if, for every pair of 

objects y and z, the 2-cell (8) is the equalizer (in the category of spans o-++ W) of 

the pair 

hom”(Z(xo, YX 9Xx0, ZN 3 hom”(K(xo, YX hom”(X(xo,xo), L~XX~, z))) 

i.e. the functor Z(xo, -) is fully faithful. 

It is now easy to give the link with the usual notion of object of generators. Let 

us denote again by C the internal full subcategory of .E generated by the object x0. 

Then we have: 

Lemma 5.2. Suppose X is cocomplete. Then x0 is a strong generator .if and only 
if the functor K(xo, -) : 9?-+ .9C has a left adjoint such that the counit is an iso- 
morphism. 

Proof. Apply the Kan formula (3) to the object x0 regarded as a functor C + X. 

The left adjoint is given by - *x0, and for every y we have X(x0, y) *x0% y because 

E-(x,, -) is fully faithful. 0 

Theorem 5.3. Suppose p* preserves the limits indexed by the modules of @. Then 
p is bounded over & if and only if p*(Yl) has a strong generator x0 such that 
- *x0: 9C -+p,(Yl) preserves the limits { p, H}, for each /3 in @. 

Proof. The morphism p is bounded over & if and only if there is an inclusion 

9-t &‘Op over 6 [4]. This gives a module a : 1 +p*C such that composition 

with (Y preserves limits of type {p*p, p*H} with p in 0. From a we determine a 

strong generator x0 of p*(Bl) and Corollary 4.2 ensures that - *x: PC +p*(Pl) 

preserves the limits of type {p, H}. The converse is similar. 0 
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